研究方向

主要从事能源、环境相关高性能晶态材料的设计合成、性能与应用等方面的研究,具体研究方向包括:

1. 分子基晶态功能材料的设计、组装与性能

2. 金属-有机框架(MOFs)吸附分离材料的研制与应用(氢气、甲烷、乙炔存储,二氧化碳捕获,工业混合多组分高效分离等)

3. 金属-有机框架基催化材料的研制与应用(C1高值转化,生物质高值转化,轻质烃高值转化,水制氢,氮分子活化及氨气合成等)

4. 理论与计算材料化学(计算催化、吸附分离等)

5. 磁性、传感材料的研制与应用

研究生招生专业:材料物理与化学;材料学;材料工程(专博、专硕)(博士生/直博生,1-2/年;硕士生,2-3/年)。

博士后招聘:长期有效(要求:具有MOFs合成吸附分离催化计算背景之一的博士毕业生)。

2024级硕士生、博士生、博士后持续招生招聘中!!!

欢迎加入!有意者请联系:tlhu@nankai.edu.cn

个人简历
  • 胡同亮,博士、教授、博士生导师,贝斯特bst3344“百名青年学科带头人”(2016)2006年博士毕业于贝斯特bst3344化学学院(导师:卜显和教授);2008年任贝斯特bst3344化学学院副教授、硕士生导师;2014-2015年,在美国德克萨斯大学圣安东尼奥分校做访问学者(合作导师:Banglin Chen教授);2016年起任贝斯特bst3344教授、博士生导师。已在Nat. Commun.J. Am. Chem. Soc.Angew. Chem.Adv. Mater.Appl. Catal. B: Environ.Coord. Chem. Rev.Small等国际著名期刊发表SCI收录论文160余篇,包括热点论文Hot Paper5篇,高被引论文ESI10篇。论文被他人正面引用9000多次,H-index = 53。相关成果曾获天津市自然科学一等奖(2011年)和国家自然科学二等奖(2014年)。

代表性成果

1. S. Q. Yang, R. Krishna, H. Chen, L. Li, L. Zhou, Y. F. An, F. Y. Zhang, Q. Zhang, Y. H. Zhang, W. Li, T. L. Hu*, and X. H. Bu, Immobilization of the Polar Group into an Ultramicroporous Metal–Organic Framework Enabling Benchmark Inverse Selective CO2/C2H2 Separation with Record C2H2 Production, J. Am. Chem. Soc., 2023. https://doi.org/10.1021/jacs.3c03265

2. S. Q Yang, T. L. Hu*, and B. Chen*, Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases, Sci. China Chem., 2023. https://doi.org/10.1007/s11426-022-1497-6

3. M. H. Yu, H. Fang, H. L. Huang, M. Zhao, Z. Y. Su, H.-X. Nie, Z. Chang*, and T. L. Hu*, Tuning the Trade-Off between Ethane/Ethylene Selectivity and Adsorption Capacity within Isoreticular Microporous Metal−Organic Frameworks by Linker Fine-Fluorination, Small, 2023. https://doi.org/10.1002/smll.202300821

4. Q. Zhang, X. Lian, R. Krishna, S. Q. Yang, and T. L. Hu*, An ultramicroporous metal-organic framework based on octahedral-like cages showing high-selective methane purification from a six-component C1/C2/C3 hydrocarbons mixture, Sep. Purif. Technol., 2023, 304, 122312. https://doi.org/10.1016/j.seppur.2022.122312

5. W. G. Cui, Q. Zhang, L. Zhou, Z. C. Wei, L. Yu, J. J. Dai, H. Zhang, and T. L. Hu*, Hybrid MOF Template-Directed Construction of Hollow-Structured In2O3@ZrO2 Heterostructure for Enhancing Hydrogenation of CO2 to Methanol, Small, 2023, 19, 2204914https://doi.org/10.1002/smll.202204914 

6. L. Zhou, W. Li, and T. L. Hu*, Computational study of Zn single-atom catalysts on In2O3 nanomaterials for direct synthesis of acetic acid from CH4 and CO2ACS Appl. Nano Mater., 2022, 5, 10015-10025https://doi.org/10.1021/acsanm.2c02426 

7. S. Q. Yang, and T. L. Hu*, Reverse-selective metal-organic framework materials for the efficient separation and purification of light hydrocarbons, Coord. Chem. Rev., 2022, 468, 214628. https://doi.org/10.1016/j.ccr.2022.214628 

8. S. Q. Yang, F. Z. Sun, R. Krishna, Q. Zhang, L. Zhou, Y. H. Zhang, and T. L. Hu*, A propane-trapping ultramicroporous metal-organic framework in the low-pressure area toward the purification of propylene, ACS Appl. Mater. Interfaces, 2021, 13, 35990-35996. https://doi.org/10.1021/acsami.1c09808

9. W. G. Cui, Y. T. Li, L. Yu, H. Zhang, and T. L. Hu*, Zeolite-encapsulated ultrasmall Cu/ZnOx nanoparticles for the hydrogenation of CO2 to methanol, ACS Appl. Mater. Interfaces, 2021, 13, 18693-18703. https://doi.org/10.1021/acsami.1c00432

10. W. G. Cui, X. Y. Zhuang, Y. T. Li, H. Zhang, J. J. Dai, L. Zhou, Z. Hu, and T. L. Hu*, Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2 methanation, Appl. Catal. B: Environ., 2021, 287, 119959. https://doi.org/10.1016/j.apcatb.2021.119959

11. S. Q. Yang, F. Z. Sun, P. Liu, L. Li, R. Krishna, Y. H. Zhang, Q. Li, L. Zhou, and T. L. Hu*, Efficient purification of ethylene from C2 hydrocarbons with an C2H6/C2H2-selective metal-organic framework, ACS Appl. Mater. Interfaces, 2021, 13, 962-969. https://doi.org/10.1021/acsami.0c20000

12.W. G. Cui, and T. L. Hu*, Incorporation of active metal species in crystalline porous materials for highly efficient synergetic catalysis, Small, 2021, 17, 2003971. https://doi.org/10.1002/smll.202003971

13.W. G. Cui, Y. T. Li, H. Zhang, Z. C. Wei, B. H. Gao, J. J. Dai, and T. L. Hu*, In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas, Appl. Catal. B: Environ., 2020, 278, 119262. https://doi.org/10.1016/j.apcatb.2020.119262

14.F. Z Sun, S. Q. Yang, R. Krishna, Y. H. Zhang, Y. P. Xia, and T. L. Hu*, Microporous metal–organic framework with a completely reversed adsorption relationship for C2 hydrocarbons at room temperature, ACS Appl. Mater. Interfaces, 2020, 12, 6105-6111. https://doi.org/10.1021/acsami.9b22410

15.L. Bao, F. Z. Sun, G. Y. Zhang*, and T. L. Hu*, High-efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over holey 2D Mn2O3 nanoflakes from a Mn-based MOF, ChemSusChem, 2020, 13, 548-555. https://doi.org/10.1002/cssc.201903018

16.W. G. Cui, T. L. Hu*, and X. H. Bu*, Metal-organic framework materials for the separation and purification of light hydrocarbons, Adv. Mater., 2020, 32, 1806445.(Hot paper, ESIhttps://doi.org/10.1002/adma.201806445

17.M. H. Yu, B. Space, D. Franz, W. Zhou, C. He, L. Li, R. Krishna, Z. Chang, W. Li, T. L. Hu*, and X. H. Bu*, Enhanced gas uptake in a microporous metal-organic framework via a sorbate induced-fit mechanism, J. Am. Chem. Soc., 2019, 141, 17703-17712. https://doi.org/10.1021/jacs.9b07807

18.Y. Shen, L. Bao, F. Z. Sun, and T. L. Hu*, A novel Cu-nanowire@Quasi-MOF via mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air, Mater. Chem. Front., 2019, 3, 2363-2373. (Inside Front Coverhttps://doi.org/10.1039/C9QM00277D

19.W. G. Cui, G. Y. Zhang, T. L. Hu*, and X. H. Bu*, Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4Coord. Chem. Rev., 2019, 387, 79-120. (ESIhttps://doi.org/10.1016/j.ccr.2019.02.001

20.Z. Q. Yao, G. Y. Li, J. Xu, T. L. Hu*, and X. H. Bu*, A water-stable luminescent Zn(II) metal-organic framework as chemosensor for high-efficiency detection of CrVI-anions (Cr2O72- and CrO42-) in aqueous solution, Chem. Eur. J., 2018, 24, 3192-3198. (VIP, Cover feature, Hot paper, ESIhttps://doi.org/10.1002/chem.201705328

21.M. H. Yu, P. Zhang, R. Feng, Z. Q. Yao, Y. C. Yu, T. L. Hu*, and X. H. Bu*, Construction of a multi-cage-based MOF with a unique network for efficient CO2 capture, ACS Appl. Mater. Interfaces, 2017, 9, 26177-26183. https://doi.org/10.1021/acsami.7b06491

22.M. H. Yu, T. L. Hu*, and X. H. Bu*, A metal–organic framework as a “turn on” fluorescent sensor for aluminum ions, Inorg. Chem. Front., 2017, 4, 256-260. https://doi.org/10.1039/C6QI00362A

23.N. Li, J. Xu, R. Feng, T. L. Hu*, and X. H. Bu*, Governing metal–organic frameworks towards high stability, Chem. Commun., 2016, 52, 8501-8513. https://doi.org/10.1039/C6CC02931K

24.T. L. Hu, H. Wang, B. Li, R. Krishna, H. Wu, W. Zhou, Y. Zhao, Y. Han, X. Wang, W. Zhu, Z. Yao, S. Xiang, and B. Chen*, Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures, Nat. Commun., 2015, 6, 7328. (ESIhttps://www.nature.com/articles/ncomms8328

25.Y. W. Li, J. Xu, D. C. Li, J. M. Dou, H. Yan, T. L. Hu*, and X. H. Bu*, Two microporous MOFs constructed from different metal clusters SBUs for selective gas adsorption, Chem. Commun., 2015, 51, 14211-14214. https://doi.org/10.1039/C5CC05097A